Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## **Hong-Ping Xiao**

School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp\_xiao@yahoo.com.cn

#### **Key indicators**

Single-crystal X-ray study T = 298 KMean  $\sigma$ (C–C) = 0.005 Å R factor = 0.057 wR factor = 0.106 Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# catena-Poly[[triaquazinc(II)]- $\mu$ -5-hydroxyisophthalato- $\kappa^2 O:O'$ ]

In the title compound,  $[Zn(C_8H_4O_5)(H_2O)_3]_n$ , the Zn<sup>II</sup> atom is in a five-coordinated environment defined by three aqua O atoms and two carboxylate O atoms from two different 5hydroxyisophthalate dianions. In the 5-hydroxyisophthalate dianions, two carboxylate groups coordinate two Zn<sup>II</sup> cations in a bidentate bridging coordination mode, forming a zigzag chain. In addition,  $O-H \cdots O$  intermolecular hydrogen bonds link the chains into a three-dimensional network.

#### Comment

Benzenedicarboxylic acids such as benzene-1,4-dicarboxylic acid and 5-hydroxyisophthalic acid are versatile ligands and can function as monodentate, bidentate or tridentate ligands; they can also bridge or chelate (Hong & You, 2004; Sun *et al.*, 2001; Xiao & Zhu, 2003). In continuation of our study of the chemistry of benzenedicarboxylate ligands (Xiao, Hu & Li, 2004; Xiao, Li, Ye & Hu, 2004; Xiao *et al.*, 2005; Zhu *et al.*, 2004), we present here the title compound, (I), in which the 5-hydroxyisophthalate dianion functions as a bridge between adjacent Zn<sup>II</sup> centers.



In (I), the Zn<sup>II</sup> atom is in a five-coordinate environment defined by three aqua O atoms and two carboxylate O atoms from two different 5-hydroxyisophthalate dianions (Fig. 1). The Zn-O1 and Zn-O4<sup>i</sup> [symmetry code: (i)  $x + \frac{1}{2}, y - \frac{1}{2}, 1-z$ ] bond lengths are in agreement with analogous literature values in complexes containing a bidentate bridging 5-hydroxyisophthalate ligand (Plater *et al.*, 2001; Li *et al.*, 2004). In the 5-hydroxyisophthalate dianions, two carboxylate groups coordinate two Zn<sup>II</sup> cations in a bidentate bridging coordination mode, forming a zigzag chain (Fig. 2).

The stability of the solid-state structure of (I) is enhanced significantly by hydrogen-bonding interactions (Table 2). These link neighbouring zizgzag chains into a three-dimensional network (Fig. 3).

Received 8 November 2005 Accepted 6 March 2006

All rights reserved

© 2006 International Union of Crystallography



#### Figure 1

The coordination environment of the Zn atom in (I), showing the atom numbering and displacement ellipsoids drawn at the 30% probability level. [Symmetry code for unlabeled atoms:  $x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ , 1 - z.]



#### Figure 2

The polymeric zigzag chain structure of (I).



#### Figure 3

The crystal packing of (I), showing the three-dimensional network structure formed by hydrogen bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted.

This investigation was performed independently of another investigation reporting the same structure, which is presented in the following paper (Wang *et al.*, 2006).

#### **Experimental**

A solution (15 ml) of dimethylformamide containing  $Zn(NO_3)_{2}$ . 6H<sub>2</sub>O (0.3 mmol, 0.088 g) and 5-hydroxyisophthalic acid (0.3 mmol, 0.052 g) was added slowly to a methanol solution (10 ml) of 1,4diazabicyclo[2.2.2]octane (0.3 mmol, 0.034 g). Colorless crystals suitable for X-ray analysis were obtained from the solution after two months at room temperature.

2327 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0207P)^2]$ 

+ 8.2421*P*] where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta\rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$ 

 $\begin{aligned} R_{\rm int} &= 0.033\\ \theta_{\rm max} &= 27.5^\circ \end{aligned}$ 

 $h = -23 \rightarrow 21$ 

 $k = -9 \rightarrow 8$ 

 $l = -18 \rightarrow 19$ 

2179 reflections with  $I > 2\sigma(I)$ 

#### Crystal data

[Zn(C<sub>8</sub>H<sub>4</sub>O<sub>5</sub>)(H<sub>2</sub>O)<sub>3</sub>] Mo Ka radiation  $M_r = 299.53$ Cell parameters from 4149 Orthorhombic, Pccn reflections a = 18.3046 (17) Å $\theta = 2.2 - 28.2^{\circ}$ b = 7.3920 (7) Å  $\mu = 2.44 \text{ mm}^{-1}$ T = 298 (2) K c = 15.0771 (14) ÅV = 2040.0 (3) Å<sup>3</sup> Prism, colorless Z = 8 $0.25 \times 0.22 \times 0.10 \text{ mm}$  $D_{\rm r} = 1.950 {\rm Mg} {\rm m}^{-3}$ 

#### Data collection

Bruker APEX area-detector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002*a*)  $T_{\min} = 0.581, T_{\max} = 0.793$ 11667 measured reflections

### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.057$   $wR(F^2) = 0.106$  S = 1.312327 reflections 155 parameters H-atom parameters constrained

# Table 1 Selected geometric parameters (Å, $^{\circ}$ ).

| Zn1-O4 <sup>i</sup>     | 1.983 (3)   | Zn1-O8                  | 2.088 (3)   |
|-------------------------|-------------|-------------------------|-------------|
| Zn1-O1                  | 2.036 (3)   | Zn1-O6                  | 2.142 (3)   |
| Zn1-O7                  | 2.040 (3)   |                         |             |
| O4 <sup>i</sup> -Zn1-O1 | 116.59 (12) | O7-Zn1-O8               | 85.28 (12)  |
| $O4^i - Zn1 - O7$       | 96.52 (13)  | O4 <sup>i</sup> -Zn1-O6 | 94.90 (13)  |
| O1-Zn1-O7               | 146.83 (12) | O1-Zn1-O6               | 88.82 (11)  |
| $O4^i - Zn1 - O8$       | 90.99 (13)  | O7-Zn1-O6               | 86.45 (11)  |
| O1-Zn1-O8               | 95.39 (11)  | O8-Zn1-O6               | 170.34 (11) |

Symmetry code: (i)  $x + \frac{1}{2}, y - \frac{1}{2}, -z + 1$ .

| Table 2              |            |
|----------------------|------------|
| Hydrogen-bond geomet | ry (Å, °). |

| $D - H \cdot \cdot \cdot A$           | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------------------|----------------|-------------------------|--------------|---------------------------|
| $O5-H5A\cdots O2^{ii}$                | 0.82           | 1.83                    | 2.646 (4)    | 176                       |
| $O6-H6A\cdotsO1^{iii}$                | 0.85           | 1.83                    | 2.642 (4)    | 158.0                     |
| $O6-H6B\cdots O3^{iv}$                | 0.85           | 1.83                    | 2.656 (4)    | 162.3                     |
| $O7-H7A\cdots O6^{v}$                 | 0.85           | 1.95                    | 2.794 (4)    | 174.5                     |
| $O7-H7B\cdots O8^{vi}$                | 0.85           | 2.28                    | 2.966 (4)    | 137.8                     |
| $O7 - H7B \cdot \cdot \cdot O4^{vii}$ | 0.85           | 2.49                    | 3.228 (5)    | 145.4                     |
| O8−H8A···O3 <sup>viii</sup>           | 0.85           | 1.83                    | 2.677 (4)    | 172.3                     |
| $O8-H8B\cdots O5^{ix}$                | 0.85           | 1.86                    | 2.711 (4)    | 176.6                     |
|                                       |                |                         |              |                           |

Symmetry codes: (ii)  $-x + \frac{1}{2}$ , y,  $z - \frac{1}{2}$ , (iii) -x + 1, -y + 2, -z + 1; (iv)  $-x + \frac{1}{2}$ ,  $-y + \frac{5}{2}$ , z; (v) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{3}{2}$ ; (vi) -x + 1,  $y + \frac{1}{2}$ ,  $-z + \frac{3}{2}$ ; (vii)  $-x + \frac{1}{2}$ , y,  $z + \frac{1}{2}$ , (viii)  $-x + \frac{1}{2}$ , y,  $z + \frac{1}{2}$ , (viii)  $-x + \frac{1}{2}$ ,  $-y + \frac{3}{2}$ , z; (ix) x,  $-y + \frac{3}{2}$ ,  $z + \frac{1}{2}$ .

Water H atoms were located in a difference map and were refined isotropically, with O–H distances restrained to 0.85 (1) Å and with  $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm O})$ . The hydroxyl H atoms were positioned geometrically (O–H = 0.82 Å) and allowed to ride on their parent atoms, with  $U_{\rm iso}({\rm H})$  values equal to  $1.5U_{\rm eq}({\rm O})$  of the parent atoms.

The remaining H atoms were positioned geometrically (C-H = 0.93 Å) and allowed to ride on their parent atoms, with  $U_{iso}$ (H) values equal to  $1.2U_{eq}$ (C) of the parent atoms.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2002*b*); software used to prepare material for publication: *SHELXL97*.

We acknowledge financial support from Zhejiang Provincial Natural Science Foundation (No. Y404294) and the '551' Distinguished Person Foundation of Wenzhou.

#### References

Bruker (2002). SAINT (Version 6.02) and SMART (Version 5.62) Bruker AXS Inc., Madison, Wisconsin, USA.

Hong, C. S. & You, Y. S. (2004). Polyhedron, 23, 3043-3050.

- Li, X. J., Cao, R., Sun, D. F., Bi, W. H., Wang, Y. Q., Li, X. & Hong, M. C. (2004). Cryst. Growth Des. 4, 775–780.
- Plater, M. J., Foreman, M. R., Howie, R. A., Skakle, J. M., McWilliam, S. A., Coronado, E. & Gomez-Garcia, C. J. (2001). *Polyhedron*, 20, 2293– 2303.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2002a). SADABS. Version 2.03. University of Göttingen, Germany.
- Sheldrick, G. M. (2002b). *SHELXTL*. Version 6.10. Bruker AXS Inc., Madison, Winsonsin, USA.
- Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. & Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.
- Wang, Z.-W., Li, Y.-Z., Cai, Y. & Zheng, H.-G. (2006). Acta Cryst. E62, m734– m735.
- Xiao, H.-P., Hu, M.-L. & Li, X.-H. (2004). Acta Cryst. E60, m336-m337.
- Xiao, H.-P., Li, X.-H., Ye, M.-D. & Hu, M.-L. (2004). Acta Cryst. E60, m253m254.
- Xiao, H.-P., Wang, W.-D., Zhang, W.-B. & Wang, J.-G. (2005). Acta Cryst. E61, m841–m843.
- Xiao, H.-P. & Zhu, L.-G. (2003). Chin. J. Inorg. Chem. 19, 1179–1183.
- Zhu, L.-G., Xiao, H.-P. & Lu, J.-Y. (2004). Inorg. Chem. Commun. 7, 94–96.