Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Ping Xiao

School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.057$
$w R$ factor $=0.106$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[triaquazinc(II)]- μ-5-hydroxy-isophthalato- $\left.\kappa^{2} O: O^{\prime}\right]$

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$, the $\mathrm{Zn}^{\mathrm{II}}$ atom is in a five-coordinated environment defined by three aqua O atoms and two carboxylate O atoms from two different 5hydroxyisophthalate dianions. In the 5-hydroxyisophthalate dianions, two carboxylate groups coordinate two $\mathrm{Zn}^{\mathrm{II}}$ cations in a bidentate bridging coordination mode, forming a zigzag chain. In addition, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds link the chains into a three-dimensional network.

Comment

Benzenedicarboxylic acids such as benzene-1,4-dicarboxylic acid and 5-hydroxyisophthalic acid are versatile ligands and can function as monodentate, bidentate or tridentate ligands; they can also bridge or chelate (Hong \& You, 2004; Sun et al., 2001; Xiao \& Zhu, 2003). In continuation of our study of the chemistry of benzenedicarboxylate ligands (Xiao, $\mathrm{Hu} \& \mathrm{Li}$, 2004; Xiao, Li, Ye \& Hu, 2004; Xiao et al., 2005; Zhu et al., 2004), we present here the title compound, (I), in which the 5hydroxyisophthalate dianion functions as a bridge between adjacent $\mathrm{Zn}^{\mathrm{II}}$ centers.

(I)

In (I), the $\mathrm{Zn}^{\mathrm{II}}$ atom is in a five-coordinate environment defined by three aqua O atoms and two carboxylate O atoms from two different 5-hydroxyisophthalate dianions (Fig. 1). The $\mathrm{Zn}-\mathrm{O} 1$ and $\mathrm{Zn}-\mathrm{O} 4^{\mathrm{i}}$ [symmetry code: (i) $x+\frac{1}{2}, y-\frac{1}{2}$, $1-z$] bond lengths are in agreement with analogous literature values in complexes containing a bidentate bridging 5hydroxyisophthalate ligand (Plater et al., 2001; Li et al., 2004). In the 5-hydroxyisophthalate dianions, two carboxylate groups coordinate two $\mathrm{Zn}^{\text {II }}$ cations in a bidentate bridging coordination mode, forming a zigzag chain (Fig. 2).

The stability of the solid-state structure of (I) is enhanced significantly by hydrogen-bonding interactions (Table 2). These link neighbouring zizgzag chains into a three-dimensional network (Fig. 3).

Figure 1
The coordination environment of the Zn atom in (I), showing the atom numbering and displacement ellipsoids drawn at the 30% probability level. [Symmetry code for unlabeled atoms: $x+\frac{1}{2}, y-\frac{1}{2}, 1-z$.]

Figure 2
The polymeric zigzag chain structure of (I).

Figure 3
The crystal packing of (I), showing the three-dimensional network structure formed by hydrogen bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted.

This investigation was performed independently of another investigation reporting the same structure, which is presented in the following paper (Wang et al., 2006).

Experimental

A solution (15 ml) of dimethylformamide containing $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot-$ $6 \mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{mmol}, 0.088 \mathrm{~g})$ and 5-hydroxyisophthalic acid $(0.3 \mathrm{mmol}$, 0.052 g) was added slowly to a methanol solution (10 ml) of $1,4-$ diazabicyclo[2.2.2]octane ($0.3 \mathrm{mmol}, \quad 0.034 \mathrm{~g}$). Colorless crystals
suitable for X-ray analysis were obtained from the solution after two months at room temperature.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
$M_{r}=299.53$
Orthorhombic, Pccn
$a=18.3046(17) \AA$
$b=7.3920(7) \AA$
$c=15.0771(14) \AA$
$V=2040.0(3) \AA^{3}$
$Z=8$
$D_{x}=1.950 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 4149

> reflections
$\theta=2.2-28.2^{\circ}$
$\mu=2.44 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colorless
$0.25 \times 0.22 \times 0.10 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002a)
$T_{\text {min }}=0.581, T_{\text {max }}=0.793$
11667 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.106$
$S=1.31$
2327 reflections
155 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0207 P)^{2}\right. \\
& \quad+8.2421 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.60 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right.$).

$\mathrm{Zn} 1-\mathrm{O} 4^{\mathrm{i}}$	$1.983(3)$	$\mathrm{Zn} 1-\mathrm{O} 8$	$2.088(3)$
$\mathrm{Zn} 1-\mathrm{O} 1$	$2.036(3)$	$\mathrm{Zn} 1-\mathrm{O} 6$	$2.142(3)$
$\mathrm{Zn} 1-\mathrm{O} 7$	$2.040(3)$		
$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1$	$116.59(12)$	$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{O} 8$	$85.28(12)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 7$	$96.52(13)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 6$	$94.90(13)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 7$	$146.83(12)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 6$	$88.82(11)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 8$	$90.99(13)$	$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{O} 6$	$86.45(11)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 8$	$95.39(11)$	$\mathrm{O} 8-\mathrm{Zn} 1-\mathrm{O} 6$	$170.34(11)$

Symmetry code: (i) $x+\frac{1}{2}, y-\frac{1}{2},-z+1$.

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 54 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.82	1.83	2.646 (4)	176
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1^{\text {iii }}$	0.85	1.83	2.642 (4)	158.0
$\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O} 3^{\text {iv }}$	0.85	1.83	2.656 (4)	162.3
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O}^{\text {v }}$	0.85	1.95	2.794 (4)	174.5
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 8^{\mathrm{vi}}$	0.85	2.28	2.966 (4)	137.8
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 4^{\text {vii }}$	0.85	2.49	3.228 (5)	145.4
$\mathrm{O} 8-\mathrm{H} 8 A \cdots \mathrm{O} 3^{\text {viii }}$	0.85	1.83	2.677 (4)	172.3
O8-H8B $\cdots{ }^{\text {O }}{ }^{\text {ix }}$	0.85	1.86	2.711 (4)	176.6

Symmetry codes: (ii) $-x+\frac{1}{2}, y, z-\frac{1}{2}$; (iii) $-x+1,-y+2,-z+1$; (iv) $-x+\frac{1}{2},-y+\frac{5}{2}, z$; (v) $-x+1, y-\frac{1}{2},-z+\frac{3}{2} ;$ (vi) $-x+1, y+\frac{1}{2},-z+\frac{3}{2} ; \quad$ (vii) $\quad-x+\frac{1}{2}, y, z+\frac{1}{2}$; (viii) $-x+\frac{1}{2},-y+\frac{3}{2}, z ;$ (ix) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.

Water H atoms were located in a difference map and were refined isotropically, with $\mathrm{O}-\mathrm{H}$ distances restrained to 0.85 (1) \AA and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The hydroxyl H atoms were positioned geometrically $(\mathrm{O}-\mathrm{H}=0.82 \AA)$ and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values equal to $1.5 U_{\mathrm{eq}}(\mathrm{O})$ of the parent atoms.

metal-organic papers

The remaining H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values equal to $1.2 U_{\text {eq }}(\mathrm{C})$ of the parent atoms.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 2002b); software used to prepare material for publication: SHELXL97.

We acknowledge financial support from Zhejiang Provincial Natural Science Foundation (No. Y404294) and the '551' Distinguished Person Foundation of Wenzhou.

References

Bruker (2002). SAINT (Version 6.02) and SMART (Version 5.62) Bruker AXS Inc., Madison, Wisconsin, USA.
Hong, C. S. \& You, Y. S. (2004). Polyhedron, 23, 3043-3050.

Li, X. J., Cao, R., Sun, D. F., Bi, W. H., Wang, Y. Q., Li, X. \& Hong, M. C. (2004). Cryst. Growth Des. 4, 775-780

Plater, M. J., Foreman, M. R., Howie, R. A., Skakle, J. M., McWilliam, S. A., Coronado, E. \& Gomez-Garcia, C. J. (2001). Polyhedron, 20, $2293-$ 2303.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002a). SADABS. Version 2.03. University of Göttingen, Germany.
Sheldrick, G. M. (2002b). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Winsonsin, USA.
Sun, D. F., Cao, R., Liang, Y. C., Shi, Q., Su, W. P. \& Hong, M. C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.
Wang, Z.-W., Li, Y.-Z., Cai, Y. \& Zheng, H.-G. (2006). Acta Cryst. E62, m734m735.
Xiao, H.-P., Hu, M.-L. \& Li, X.-H. (2004). Acta Cryst. E60, m336-m337.
Xiao, H.-P., Li, X.-H., Ye, M.-D. \& Hu, M.-L. (2004). Acta Cryst. E60, m253m254.
Xiao, H.-P., Wang, W.-D., Zhang, W.-B. \& Wang, J.-G. (2005). Acta Cryst. E61, m841-m843.
Xiao, H.-P. \& Zhu, L.-G. (2003). Chin. J. Inorg. Chem. 19, 1179-1183.
Zhu, L.-G., Xiao, H.-P. \& Lu, J.-Y. (2004). Inorg. Chem. Commun. 7, 9496.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

